Untitled
unknown
python
a year ago
2.9 kB
9
Indexable
from langchain.callbacks import StreamlitCallbackHandler
import streamlit as st
import pandas as pd
import os
import openpyxl
from langchain_groq import ChatGroq
from langchain_experimental.agents import create_pandas_dataframe_agent
from langchain.agents.agent_types import AgentType
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from dotenv import load_dotenv
import os
import matplotlib.pyplot as plt
load_dotenv()
file_formats = {
"csv": pd.read_csv,
"xls": pd.read_excel,
"xlsx": pd.read_excel,
"xlsm": pd.read_excel,
"xlsb": pd.read_excel,
}
def clear_submit():
"""
Clear the Submit Button State
Returns:
"""
st.session_state["submit"] = False
@st.cache_data(ttl="2h")
def load_data(uploaded_file):
try:
ext = os.path.splitext(uploaded_file.name)[1][1:].lower()
except:
ext = uploaded_file.split(".")[-1]
if ext in file_formats:
return file_formats[ext](uploaded_file)
else:
st.error(f"Unsupported file format: {ext}")
return None
st.set_page_config(page_title="LangChain: Chat with pandas DataFrame", page_icon="🦜")
st.title("🦜 LangChain: Chat with pandas DataFrame")
uploaded_file = st.file_uploader(
"Upload a Data file",
type=list(file_formats.keys()),
help="Various File formats are Support",
on_change=clear_submit,
)
if not uploaded_file:
st.warning(
"This app uses LangChain's `PythonAstREPLTool` which is vulnerable to arbitrary code execution. Please use caution in deploying and sharing this app."
)
if uploaded_file:
df = load_data(uploaded_file)
if "messages" not in st.session_state or st.sidebar.button("Clear conversation history"):
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input(placeholder="What is this data about?"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
llm = ChatGroq(
model="mixtral-8x7b-32768",
temperature=0,
max_tokens=1024,
api_key=os.getenv("GROQ_API_KEY"),
streaming=True
)
pandas_df_agent = create_pandas_dataframe_agent(
llm,
df,
verbose=True,
agent_type=AgentType.OPENAI_FUNCTIONS,
handle_parsing_errors=True,
allow_dangerous_code=True,
)
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
response = pandas_df_agent.run(st.session_state.messages, callbacks=[st_cb])
st.session_state.messages.append({"role": "assistant", "content": response})
st.write(response)Editor is loading...
Leave a Comment