import numpy as np
from sklearn.covariance import EllipticEnvelope
# Initialize outlier detection model
outlier_detector = EllipticEnvelope(contamination=0.1)
# Function to detect outliers on new data
def detect_outliers(new_data):
# Make predictions on new data
outlier_detector.fit(data)
y_pred = outlier_detector.predict(new_data)
# Identify predictions as outliers
outliers = new_data[y_pred == -1]
# Return the outlier data points
return outliers
# Example usage
data = [...] # initialize original training data
# Get new data
new_data = get_new_data()
# Detect outliers
outliers = detect_outliers(new_data)
# Outliers contains the new data points considered outliers