2
unknown
python
2 years ago
699 B
5
Indexable
import numpy as np from sklearn.covariance import EllipticEnvelope # Initialize outlier detection model outlier_detector = EllipticEnvelope(contamination=0.1) # Function to detect outliers on new data def detect_outliers(new_data): # Make predictions on new data outlier_detector.fit(data) y_pred = outlier_detector.predict(new_data) # Identify predictions as outliers outliers = new_data[y_pred == -1] # Return the outlier data points return outliers # Example usage data = [...] # initialize original training data # Get new data new_data = get_new_data() # Detect outliers outliers = detect_outliers(new_data) # Outliers contains the new data points considered outliers
Editor is loading...