Untitled
unknown
matlab
3 years ago
1.3 kB
8
Indexable
% Splitti i dati in training and test sets [train_ind, test_ind] = holdout(numel(images), 0.6); %Scegli tu il valore del bilanciamento) train_features = features(train_ind, :); train_labels = labels(train_ind); test_features = features(test_ind, :); test_labels = labels(test_ind); % Training del classificatore SVM svm_model = fitcsvm(train_features, train_labels); % Training di un ensemble tree classifier ensemble_model = fitensemble(train_features, train_labels, 'AdaBoostM2', 100, 'Tree'); % Classifico il test set utilizzando i classificatori SVM e ensemble tree svm_predictions = predict(svm_model, test_features); ensemble_predictions = predict(ensemble_model, test_features); % Calcolo la confusion matrix per ciascun classificatore svm_confusion = confusionmat(test_labels, svm_predictions); ensemble_confusion = confusionmat(test_labels, ensemble_predictions); % Visualizzo la confusion matrix per ciascun classificatore subplot(1, 2, 1); plotconfusion(test_labels, svm_predictions); title('SVM Confusion Matrix'); subplot(1, 2, 2); plotconfusion(test_labels, ensemble_predictions); title('Ensemble Confusion Matrix'); % Calcolo le performance metrics per ogni classificatore svm_report = classification_report(test_labels, svm_predictions); ensemble_report = classification_report(test_labels, ensemble_predictions);
Editor is loading...