TensorFlow ile Doğrusal Regresyon
unknown
python
2 months ago
970 B
2
Indexable
import numpy as np import tensorflow as tf # Veri seti (örnek) X = np.array([1, 2, 3, 4, 5], dtype=np.float32) # Girdi y = np.array([2, 4, 6, 8, 10], dtype=np.float32) # Çıktı (2x ilişkisi) # Model parametreleri w = tf.Variable(0.0) # Ağırlık b = tf.Variable(0.0) # Bias # Doğrusal model def linear_model(X): return w * X + b # Kayıp fonksiyonu (Mean Squared Error) def loss_fn(y_true, y_pred): return tf.reduce_mean(tf.square(y_true - y_pred)) # Optimizasyon (Gradient Descent Optimizer) optimizer = tf.optimizers.SGD(learning_rate=0.01) # Modeli eğit for epoch in range(1000): with tf.GradientTape() as tape: y_pred = linear_model(X) loss = loss_fn(y, y_pred) gradients = tape.gradient(loss, [w, b]) optimizer.apply_gradients(zip(gradients, [w, b])) print(f"Öğrenilen ağırlık (w): {w.numpy()}, Bias (b): {b.numpy()}") # Modelin tahminleri y_pred = linear_model(X) print("Tahminler:", y_pred.numpy())
Editor is loading...
Leave a Comment