class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class ConcatBiFPN(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, c1, c2):
super(ConcatBiFPN, self).__init__()
# self.relu = nn.ReLU()
self.w1 = nn.Parameter(torch.ones(2, dtype = torch.float32), requires_grad = True)
self.w2 = nn.Parameter(torch.ones(3, dtype = torch.float32), requires_grad = True)
self.epsilon = 0.0001
self.conv = nn.Conv2d(c1, c2, kernel_size = 1, stride = 1, padding = 0)
self.swish = Swish()
def forward(self, x):
outs = self._forward(x)
return outs
def _forward(self, x):
if len(x) == 2:
# w = self.relu(self.w1)
w = self.w1
weight = w / (torch.sum(w, dim=0) + self.epsilon)
# Connections for P6_0 and P7_0 to P6_1 respectively
x = self.conv(self.swish(weight[0] * x[0] + weight[1] * x[1]))
elif len(x) == 3:
# w = self.relu(self.w2)
w = self.w2
weight = w / (torch.sum(w, dim=0) + self.epsilon)
x = self.conv(self.swish(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))
return x
elif m is ConcatBiFPN:
c2 = max([ch[x] for x in f])
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPFTR2, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 6, 13], 1, ConcatBiFPN, [256, 256]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]