Camera handling + machine learning
unknown
swift
2 years ago
2.6 kB
5
Indexable
import UIKit
import AVFoundation
class ViewController: UIViewController, AVCapturePhotoCaptureDelegate {
var captureSession: AVCaptureSession?
var captureOutput: AVCapturePhotoOutput?
var previewLayer: AVCaptureVideoPreviewLayer?
var capturedImage: UIImage?
override func viewDidLoad() {
super.viewDidLoad()
setupCaptureSession()
setupPreviewLayer()
}
func setupCaptureSession() {
captureSession = AVCaptureSession()
captureSession?.sessionPreset = AVCaptureSession.Preset.photo
guard let backCamera = AVCaptureDevice.default(for: AVMediaType.video) else {
print("Unable to access the camera")
return
}
do {
let input = try AVCaptureDeviceInput(device: backCamera)
captureSession?.addInput(input)
captureOutput = AVCapturePhotoOutput()
captureSession?.addOutput(captureOutput!)
captureSession?.startRunning()
} catch {
print("Error setting up capture session: \(error.localizedDescription)")
}
}
func setupPreviewLayer() {
previewLayer = AVCaptureVideoPreviewLayer(session: captureSession!)
previewLayer?.videoGravity = AVLayerVideoGravity.resizeAspectFill
previewLayer?.frame = view.bounds
view.layer.insertSublayer(previewLayer!, at: 0)
}
@IBAction func captureButtonPressed(_ sender: UIButton) {
let settings = AVCapturePhotoSettings()
captureOutput?.capturePhoto(with: settings, delegate: self)
}
func photoOutput(_ output: AVCapturePhotoOutput, didFinishProcessingPhoto photo: AVCapturePhoto, error: Error?) {
guard let imageData = photo.fileDataRepresentation() else {
print("Error converting photo to data")
return
}
capturedImage = UIImage(data: imageData)
// Call your machine learning model function here, passing the capturedImage variable
// Example usage:
// performImageClassification(image: capturedImage)
}
func performImageClassification(image: UIImage?) {
// Implement your machine learning model code here to classify the image
// Example:
// let model = YourMachineLearningModel()
// let classificationResult = model.classifyImage(image)
// Use the classification result as needed
// Example:
// print(classificationResult)
}
}
Editor is loading...