Camera handling + machine learning
unknown
swift
2 years ago
2.6 kB
4
Indexable
import UIKit import AVFoundation class ViewController: UIViewController, AVCapturePhotoCaptureDelegate { var captureSession: AVCaptureSession? var captureOutput: AVCapturePhotoOutput? var previewLayer: AVCaptureVideoPreviewLayer? var capturedImage: UIImage? override func viewDidLoad() { super.viewDidLoad() setupCaptureSession() setupPreviewLayer() } func setupCaptureSession() { captureSession = AVCaptureSession() captureSession?.sessionPreset = AVCaptureSession.Preset.photo guard let backCamera = AVCaptureDevice.default(for: AVMediaType.video) else { print("Unable to access the camera") return } do { let input = try AVCaptureDeviceInput(device: backCamera) captureSession?.addInput(input) captureOutput = AVCapturePhotoOutput() captureSession?.addOutput(captureOutput!) captureSession?.startRunning() } catch { print("Error setting up capture session: \(error.localizedDescription)") } } func setupPreviewLayer() { previewLayer = AVCaptureVideoPreviewLayer(session: captureSession!) previewLayer?.videoGravity = AVLayerVideoGravity.resizeAspectFill previewLayer?.frame = view.bounds view.layer.insertSublayer(previewLayer!, at: 0) } @IBAction func captureButtonPressed(_ sender: UIButton) { let settings = AVCapturePhotoSettings() captureOutput?.capturePhoto(with: settings, delegate: self) } func photoOutput(_ output: AVCapturePhotoOutput, didFinishProcessingPhoto photo: AVCapturePhoto, error: Error?) { guard let imageData = photo.fileDataRepresentation() else { print("Error converting photo to data") return } capturedImage = UIImage(data: imageData) // Call your machine learning model function here, passing the capturedImage variable // Example usage: // performImageClassification(image: capturedImage) } func performImageClassification(image: UIImage?) { // Implement your machine learning model code here to classify the image // Example: // let model = YourMachineLearningModel() // let classificationResult = model.classifyImage(image) // Use the classification result as needed // Example: // print(classificationResult) } }
Editor is loading...