Untitled
unknown
python
a year ago
2.2 kB
6
Indexable
import numpy as np from scipy.linalg import solve_banded def implicitsolver(D, upsilon, theta_end, d_theta, dy, U_x, delta_x, isturbulent): R = D / 2 dx = np.radians(d_theta) x_num = int(np.ceil(theta_end / d_theta)) y_max = max(delta_x) y_num = int(np.ceil(y_max / dy)) u = np.zeros((x_num + 1, y_num + 1)) v = np.zeros((x_num + 1, y_num + 1)) for i in range(x_num - 1): i_i = i + 1 j_max = int(np.ceil(delta_x[i_i + 1] / dy)) - 1 A = np.zeros((3, j_max)) # Adjusted for use with solve_banded B = np.zeros(j_max) for j in range(j_max): j_i = j r = R + dy * j # Similar turbulent viscosity calculation as MATLAB, adapt as needed y = dy * j # Example calculation for y_plus and upsilon_t, adapt as needed y_plus = np.sqrt(upsilon * (u[i_i, j_i + 1] - u[i_i, j_i]) / dy) * y / upsilon if 60 < y_plus < 300: upsilon_t_p = (1 + 0.4 * y_plus) * upsilon upsilon_t_n = (1 + 0.4 * y_plus) * upsilon else: l = min(0.4 * (j + 1) * dy, 0.09 * delta_x[i_i + 1]) upsilon_t_p = upsilon + isturbulent * l ** 2 * abs((u[i_i, j_i + 2] - u[i_i, j_i + 1]) / dy) upsilon_t_n = upsilon + isturbulent * l ** 2 * abs((u[i_i, j_i + 1] - u[i_i, j_i]) / dy) # Example calculation for B, adapt as needed # Example calculations for A matrix elements, adapt as needed # Solve tridiagonal system using solve_banded # You need to adjust A and B accordingly to match solve_banded's expected input format # u_t = solve_banded((1, 1), A, B) # Update u and v fields # Remember to adapt indexing and operations to match Python's zero-based indexing return u, v # Note: This code will not run as-is due to placeholders and simplifications. # It's meant to provide a structural template for converting the MATLAB function to Python.
Editor is loading...
Leave a Comment