Untitled
unknown
python
2 years ago
20 kB
6
Indexable
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import argparse import glob import logging import os import pickle import sys from typing import Any, ClassVar, Dict, List import torch import cv2 from detectron2.config import CfgNode, get_cfg from detectron2.data.detection_utils import read_image from detectron2.engine.defaults import DefaultPredictor from detectron2.structures.instances import Instances from detectron2.utils.logger import setup_logger from densepose import add_densepose_config from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput from densepose.utils.logger import verbosity_to_level from densepose.vis.base import CompoundVisualizer from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer from densepose.vis.densepose_outputs_vertex import ( DensePoseOutputsTextureVisualizer, DensePoseOutputsVertexVisualizer, get_texture_atlases, ) from densepose.vis.densepose_results import ( DensePoseResultsContourVisualizer, DensePoseResultsFineSegmentationVisualizer, DensePoseResultsUVisualizer, DensePoseResultsVVisualizer, ) from densepose.vis.densepose_results_textures import ( DensePoseResultsVisualizerWithTexture, get_texture_atlas, ) from densepose.vis.extractor import ( CompoundExtractor, DensePoseOutputsExtractor, DensePoseResultExtractor, create_extractor, ) from pdb import set_trace as bb import tqdm DOC = """Apply Net - a tool to print / visualize DensePose results """ LOGGER_NAME = "apply_net" logger = logging.getLogger(LOGGER_NAME) _ACTION_REGISTRY: Dict[str, "Action"] = {} def box_overlaps(box1, box2): x1_min, y1_min, x1_max, y1_max = box1 x2_min, y2_min, x2_max, y2_max = box2 # Compute the area of both bounding boxes area1 = (x1_max - x1_min) * (y1_max - y1_min) area2 = (x2_max - x2_min) * (y2_max - y2_min) # Compute the intersection area x_min = max(x1_min, x2_min) y_min = max(y1_min, y2_min) x_max = min(x1_max, x2_max) y_max = min(y1_max, y2_max) intersection_area = max(0, x_max - x_min) * max(0, y_max - y_min) # Compute the union area union_area = area1 + area2 - intersection_area # Compute the IoU iou = intersection_area / union_area return iou def get_box(mask): if np.sum(mask) == 0: return -1,-1 ret,binary = cv2.threshold(mask,127,255,cv2.THRESH_BINARY) contours,hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) x,y,w,h = cv2.boundingRect(contours[0]) center = (x + w//2, y + h//2) if max(w, h) < 80 or max(w,h)/max(mask.shape[0], mask.shape[1]) < 0.05: return -1, -1 d = max(w,h)//2 if d < 74: d = 74 y2 = min(center[1] + 1.5*d, mask.shape[0]-1) y1 = y2 - 3.5*d if y1 < 0: y1 = 0 y2 = y1 + 3.5*d x1 = max(0, center[0] - 1.75*d) x2 = x1 + d*3.5 if x2 >= mask.shape[1]: x2 = mask.shape[1]-1 x1 = x2 - d*3.5 return [int(x1),int(y1),int(x2),int(y2)], [int(x),int(y),int(x+w),int(y+h)] def get_arm_box(img, mask): if np.sum(mask) == 0: return -1,-1 bb() skin_mask = get_skin_color_mask(img.copy()) skin_mask[mask==0] = 0 skin_pixels = np.sum(skin_mask>0) arm_pixels = np.sum(mask>0) ratio = skin_pixels/arm_pixels if ratio < 0.3: return -1,-1 ret,binary = cv2.threshold(mask,127,255,cv2.THRESH_BINARY) contours,hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) x,y,w,h = cv2.boundingRect(contours[0]) center = (x + w//2, y + h//2) if h < 500: return -1, -1 if h/w < 2: return -1, -1 d = h//2 y2 = min(center[1] + 1.05*d, mask.shape[0]-1) y1 = y2 - 2.05*d if y1 < 0: y1 = 0 y2 = y1 + 2.05*d x1 = max(0, center[0] - d*0.25) x2 = x1 + d*0.5 if x2 >= mask.shape[1]: x2 = mask.shape[1]-1 x1 = x2 - d*0.5 return [int(x1),int(y1),int(x2),int(y2)], [int(x),int(y),int(x+w),int(y+h)] class Action(object): @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): parser.add_argument( "-v", "--verbosity", action="count", help="Verbose mode. Multiple -v options increase the verbosity.", ) def register_action(cls: type): """ Decorator for action classes to automate action registration """ global _ACTION_REGISTRY _ACTION_REGISTRY[cls.COMMAND] = cls return cls class InferenceAction(Action): @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(InferenceAction, cls).add_arguments(parser) parser.add_argument("cfg", metavar="<config>", help="Config file") parser.add_argument("model", metavar="<model>", help="Model file") parser.add_argument("input", metavar="<input>", help="Input data") parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) @classmethod def execute(cls: type, args: argparse.Namespace): logger.info(f"Loading config from {args.cfg}") opts = [] cfg = cls.setup_config(args.cfg, args.model, args, opts) logger.info(f"Loading model from {args.model}") predictor = DefaultPredictor(cfg) logger.info(f"Loading data from {args.input}") file_list = cls._get_input_file_list(args.input) if len(file_list) == 0: logger.warning(f"No input images for {args.input}") return context = cls.create_context(args, cfg) f = open(file_list[0], 'r') file_list = f.read().split() f.close() num_images = len(file_list) import time np.random.seed(int(time.time())) perm = np.random.permutation(len(file_list)) cfg['INPUT']['MIN_SIZE_TEST'] = 400 cfg['INPUT']['MAX_SIZE_TEST'] = 1200 #done_names = os.popen('ls /media/bharat/ssd/hand_data_2/*.jpg').read().split() for i in tqdm.tqdm(range(len(file_list))): file_name = '/media/bharat/ssd/downloads/fashionova/zalando/' + file_list[perm[i]] name = file_name.split('.jpg')[0] name = name + '.txt' if os.path.exists(name): continue try: img = read_image(file_name, format="BGR") # predictor expects BGR image. except: continue print(name) with torch.no_grad(): outputs = predictor(img)["instances"] cls.execute_on_outputs(context, {"file_name": file_name, "image": img}, outputs) os.system('touch ' + name) cls.postexecute(context) @classmethod def setup_config( cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str] ): cfg = get_cfg() add_densepose_config(cfg) cfg.merge_from_file(config_fpath) cfg.merge_from_list(args.opts) if opts: cfg.merge_from_list(opts) cfg.MODEL.WEIGHTS = model_fpath cfg.freeze() return cfg @classmethod def _get_input_file_list(cls: type, input_spec: str): if os.path.isdir(input_spec): file_list = [ os.path.join(input_spec, fname) for fname in os.listdir(input_spec) if os.path.isfile(os.path.join(input_spec, fname)) ] elif os.path.isfile(input_spec): file_list = [input_spec] else: file_list = glob.glob(input_spec) ffile_list = [] for names in file_list: if '.png' in names: continue else: ffile_list.append(names) return ffile_list @register_action class DumpAction(InferenceAction): """ Dump action that outputs results to a pickle file """ COMMAND: ClassVar[str] = "dump" @classmethod def add_parser(cls: type, subparsers: argparse._SubParsersAction): parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.") cls.add_arguments(parser) parser.set_defaults(func=cls.execute) @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(DumpAction, cls).add_arguments(parser) parser.add_argument( "--output", metavar="<dump_file>", default="results.pkl", help="File name to save dump to", ) @classmethod def execute_on_outputs( cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances ): image_fpath = entry["file_name"] logger.info(f"Processing {image_fpath}") result = {"file_name": image_fpath} if outputs.has("scores"): result["scores"] = outputs.get("scores").cpu() if outputs.has("pred_boxes"): result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu() if outputs.has("pred_densepose"): if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput): extractor = DensePoseResultExtractor() elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput): extractor = DensePoseOutputsExtractor() result["pred_densepose"] = extractor(outputs)[0] context["results"].append(result) @classmethod def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode): context = {"results": [], "out_fname": args.output} return context @classmethod def postexecute(cls: type, context: Dict[str, Any]): out_fname = context["out_fname"] out_dir = os.path.dirname(out_fname) if len(out_dir) > 0 and not os.path.exists(out_dir): os.makedirs(out_dir) with open(out_fname, "wb") as hFile: pickle.dump(context["results"], hFile) logger.info(f"Output saved to {out_fname}") @register_action class ShowAction(InferenceAction): """ Show action that visualizes selected entries on an image """ COMMAND: ClassVar[str] = "show" VISUALIZERS: ClassVar[Dict[str, object]] = { "dp_contour": DensePoseResultsContourVisualizer, "dp_segm": DensePoseResultsFineSegmentationVisualizer, "dp_u": DensePoseResultsUVisualizer, "dp_v": DensePoseResultsVVisualizer, "dp_iuv_texture": DensePoseResultsVisualizerWithTexture, "dp_cse_texture": DensePoseOutputsTextureVisualizer, "dp_vertex": DensePoseOutputsVertexVisualizer, "bbox": ScoredBoundingBoxVisualizer, } @classmethod def add_parser(cls: type, subparsers: argparse._SubParsersAction): parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") cls.add_arguments(parser) parser.set_defaults(func=cls.execute) @classmethod def add_arguments(cls: type, parser: argparse.ArgumentParser): super(ShowAction, cls).add_arguments(parser) parser.add_argument( "visualizations", metavar="<visualizations>", help="Comma separated list of visualizations, possible values: " "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), ) parser.add_argument( "--min_score", metavar="<score>", default=0.9, type=float, help="Minimum detection score to visualize", ) parser.add_argument( "--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold" ) parser.add_argument( "--texture_atlas", metavar="<texture_atlas>", default=None, help="Texture atlas file (for IUV texture transfer)", ) parser.add_argument( "--texture_atlases_map", metavar="<texture_atlases_map>", default=None, help="JSON string of a dict containing texture atlas files for each mesh", ) parser.add_argument( "--output", metavar="<image_file>", default="outputres.png", help="File name to save output to", ) @classmethod def setup_config( cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str] ): opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST") opts.append(str(args.min_score)) if args.nms_thresh is not None: opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST") opts.append(str(args.nms_thresh)) cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts) return cfg @classmethod def execute_on_outputs( cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances ): import cv2 import numpy as np visualizer = context["visualizer"] extractor = context["extractor"] image_fpath = entry["file_name"] #mask_fpath = entry["file_name"].split('.jpeg')[0] logger.info(f"Processing {image_fpath}") image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY) image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) data = extractor(outputs) scaling_x = image.shape[0] scaling_y = image.shape[1] if data[0][0] is not None: try: all_boxes = [] all_fin_boxes = [] all_masks = [] img = cv2.imread(entry["file_name"]) for i in range(len(data[0][0])): box = data[1][0][i].cpu().numpy() mask = data[0][0][i].labels.cpu().numpy() #rmask = np.array(255*(mask==3), dtype=np.uint8) rmask = np.array(255*((mask==3) | (mask==16) | (mask==18) | (mask==20) | (mask==22)), dtype=np.uint8) right_hand_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) right_hand_mask[int(box[1]):int(box[1])+rmask.shape[0], int(box[0]):int(box[0])+rmask.shape[1]] = rmask #discard very small boxes and resize very large boxes to a reasonable size right_box_fin, original_right_box = get_arm_box(img, right_hand_mask) #lmask = np.array(255*(mask==4), dtype=np.uint8) lmask = np.array(255*((mask==4) | (mask==19) | (mask==21) | (mask==15) | (mask==17)), dtype=np.uint8) left_hand_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) left_hand_mask[int(box[1]):int(box[1])+lmask.shape[0], int(box[0]):int(box[0])+lmask.shape[1]] = lmask left_box_fin, original_left_box = get_arm_box(img, left_hand_mask) #check if there is any overlap across boxes, if yes, discard overlapping boxes if right_box_fin != -1: all_boxes.append(original_right_box) all_fin_boxes.append(right_box_fin) all_masks.append(right_hand_mask) if left_box_fin != -1: all_boxes.append(original_left_box) all_masks.append(left_hand_mask) all_fin_boxes.append(left_box_fin) for i in range(len(all_boxes)): #save the image, box and the mask img = cv2.imread(entry["file_name"]) crop_box = all_fin_boxes[i] img = img[crop_box[1]:crop_box[3], crop_box[0]:crop_box[2], :] mask = all_masks[i][crop_box[1]:crop_box[3], crop_box[0]:crop_box[2]] bbox = [all_boxes[i][0]-crop_box[0], all_boxes[i][1]-crop_box[1], all_boxes[i][2]-crop_box[0], all_boxes[i][3]-crop_box[1]] name = entry["file_name"].split('.jpg')[0] init_path = entry["file_name"].split('/') init_path = init_path[-3] + '/' + init_path[-2] + '/' base_name = '/media/bharat/ssd/arm_data/' + init_path if not os.path.exists(base_name): os.system('mkdir -p ' + base_name) name = base_name + name.split('/')[-1] #name = 'tmp2/' + name.split('/')[-1] cv2.imwrite(name + '_{}_{}_{}_{}_{}.jpg'.format(i, bbox[0], bbox[1], bbox[2], bbox[3]), img) cv2.imwrite(name + '_{}_mask.png'.format(i), mask) except: return """image_vis = visualizer.visualize(image, data) entry_idx = context["entry_idx"] + 1 out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) out_dir = os.path.dirname(out_fname) if len(out_dir) > 0 and not os.path.exists(out_dir): os.makedirs(out_dir) #cv2.imwrite(out_fname, image_vis) logger.info(f"Output saved to {out_fname}") context["entry_idx"] += 1""" @classmethod def postexecute(cls: type, context: Dict[str, Any]): pass @classmethod def _get_out_fname(cls: type, entry_idx: int, fname_base: str): base, ext = os.path.splitext(fname_base) return base + ".{0:04d}".format(entry_idx) + ext @classmethod def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]: vis_specs = args.visualizations.split(",") visualizers = [] extractors = [] for vis_spec in vis_specs: texture_atlas = get_texture_atlas(args.texture_atlas) texture_atlases_dict = get_texture_atlases(args.texture_atlases_map) vis = cls.VISUALIZERS[vis_spec]( cfg=cfg, texture_atlas=texture_atlas, texture_atlases_dict=texture_atlases_dict, ) visualizers.append(vis) extractor = create_extractor(vis) extractors.append(extractor) visualizer = CompoundVisualizer(visualizers) extractor = CompoundExtractor(extractors) context = { "extractor": extractor, "visualizer": visualizer, "out_fname": args.output, "entry_idx": 0, } return context def create_argument_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser( description=DOC, formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), ) parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) subparsers = parser.add_subparsers(title="Actions") for _, action in _ACTION_REGISTRY.items(): action.add_parser(subparsers) return parser def main(): parser = create_argument_parser() args = parser.parse_args() verbosity = args.verbosity if hasattr(args, "verbosity") else None global logger logger = setup_logger(name=LOGGER_NAME) logger.setLevel(verbosity_to_level(verbosity)) args.func(args) if __name__ == "__main__": main()
Editor is loading...