helper.py(quoc14)
unknown
python
a year ago
1.7 kB
16
Indexable
import numpy as np
import glob
import os
from sklearn.preprocessing import normalize
def list_all_folders(folder_path):
subdirs = []
for x in os.walk(folder_path):
subdirs.append(x[0])
return subdirs
def list_all_files(folder_path, ext = '.jpg'):
all_file_paths = []
for folder in list_all_folders(folder_path):
file_paths = glob.glob(folder + "/*" + ext)
all_file_paths += file_paths
return all_file_paths
def run_pathlib_iterdir(directory):
sub_dirs = [f.name for f in directory.iterdir() if f.is_dir()]
return sub_dirs
def write_to_file(inp_list, file_path):
f = open(file_path, "w")
for item in inp_list:
f.write("%s\n" % item)
f.close()
def read_from_file(file_path, split = None):
out_list = []
f = open(file_path, "r")
for line in f:
# remove linebreak from a current name
# linebreak is the last character of each line
x = line[:-1]
if (split != None):
x = x.split(split)
# add current item to the list
out_list.append(x)
f.close()
return out_list
def load_embedding__(file_path):
f= open(file_path, "r")
Lines = f.readlines()
embeddings = [float(elt.strip()) for elt in Lines]
f.close()
embeddings = normalize(np.array([embeddings]).astype("float32"))[0]
return np.asarray(embeddings)
def load_embedding(file_path):
f= open(file_path, "r")
line = f.read()
embeddings = [float(elt.strip()) for elt in line.split(',')]
f.close()
embeddings = normalize(np.array([embeddings]).astype("float32"))[0]
return np.asarray(embeddings)
Editor is loading...
Leave a Comment