helper.py(quoc14)
unknown
python
5 months ago
1.7 kB
2
Indexable
import numpy as np import glob import os from sklearn.preprocessing import normalize def list_all_folders(folder_path): subdirs = [] for x in os.walk(folder_path): subdirs.append(x[0]) return subdirs def list_all_files(folder_path, ext = '.jpg'): all_file_paths = [] for folder in list_all_folders(folder_path): file_paths = glob.glob(folder + "/*" + ext) all_file_paths += file_paths return all_file_paths def run_pathlib_iterdir(directory): sub_dirs = [f.name for f in directory.iterdir() if f.is_dir()] return sub_dirs def write_to_file(inp_list, file_path): f = open(file_path, "w") for item in inp_list: f.write("%s\n" % item) f.close() def read_from_file(file_path, split = None): out_list = [] f = open(file_path, "r") for line in f: # remove linebreak from a current name # linebreak is the last character of each line x = line[:-1] if (split != None): x = x.split(split) # add current item to the list out_list.append(x) f.close() return out_list def load_embedding__(file_path): f= open(file_path, "r") Lines = f.readlines() embeddings = [float(elt.strip()) for elt in Lines] f.close() embeddings = normalize(np.array([embeddings]).astype("float32"))[0] return np.asarray(embeddings) def load_embedding(file_path): f= open(file_path, "r") line = f.read() embeddings = [float(elt.strip()) for elt in line.split(',')] f.close() embeddings = normalize(np.array([embeddings]).astype("float32"))[0] return np.asarray(embeddings)
Editor is loading...
Leave a Comment