Untitled

mail@pastecode.io avatar
unknown
plain_text
6 months ago
859 B
5
Indexable
Never
#main.py
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS

# define what documents to load
loader = DirectoryLoader("E:\Bismi\Chatbot_llama\Backend\Documents", glob="*.txt", loader_cls=TextLoader)

# interpret information in the documents
documents = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=500,
                                          chunk_overlap=50)
texts = splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={'device': 'cpu'})

# create and save the local database
db = FAISS.from_documents(texts, embeddings)
db.save_local("faiss")
print("success")
Leave a Comment