Untitled
unknown
plain_text
6 months ago
859 B
5
Indexable
Never
#main.py from langchain.document_loaders import DirectoryLoader, TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS # define what documents to load loader = DirectoryLoader("E:\Bismi\Chatbot_llama\Backend\Documents", glob="*.txt", loader_cls=TextLoader) # interpret information in the documents documents = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) # create and save the local database db = FAISS.from_documents(texts, embeddings) db.save_local("faiss") print("success")
Leave a Comment