# Untitled

unknown
plain_text
a month ago
20 kB
1
Indexable
Never
<!DOCTYPE html>
<html lang="en">
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Grade 9 Math Exam Study Guide</title>
<style>
body {
font-family: Arial, sans-serif;
line-height: 1.6;
margin: 0;
background-color: #f4f4f4;
}
.container {
width: 80%;
margin: auto;
overflow: hidden;
}
background: #333;
color: #fff;
min-height: 70px;
border-bottom: #777 3px solid;
}
color: #fff;
text-decoration: none;
text-transform: uppercase;
font-size: 16px;
}
float: left;
display: inline;
}
float: left;
}
margin: 0;
}
float: right;
margin-top: 10px;
}
color: #e8491d;
font-weight: bold;
}
color: #cccccc;
font-weight: bold;
}
#showcase {
min-height: 400px;
background: url('showcase.jpg') no-repeat 0 -400px;
text-align: center;
color: #fff;
}
#showcase h1 {
margin-top: 100px;
font-size: 55px;
margin-bottom: 10px;
}
#showcase p {
font-size: 20px;
}
section {
margin-top: 20px;
background: #fff;
}
.dark {
background: #333;
color: #fff;
margin-top: 10px;
margin-bottom: 10px;
}
</style>
<body>
<div class="container">
<div id="branding">
<h1>Grade 9 Math Exam Study Guide</h1>
</div>
<nav>
<ul>
<li><a href="#ratios">Ratios</a></li>
<li><a href="#percentages">Percentages</a></li>
<li><a href="#notation">Scientific Notation</a></li>
<li><a href="#cartesian">Cartesian Plane</a></li>
<li><a href="#squares">Sum of Squares</a></li>
<li><a href="#graphing">Graph a Line</a></li>
<li><a href="#slope">Slope & Intercept</a></li>
<li><a href="#linear-system">Linear Systems</a></li>
<li><a href="#scatter-plot">Scatter Plot</a></li>
<li><a href="#choice">Choice</a></li>
</ul>
</nav>
</div>
<section id="main">
<div class="container">
<article id="ratios">
<h2>Ratios</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>A ratio compares two quantities.</li>
<li>Simplify ratios by dividing both terms by their greatest common divisor.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Simplify the ratio 18:24.</p>
<p>$\frac{18}{24} = \frac{3}{4}$</p>
<p>So, the simplified ratio is 3:4.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Simplify the ratio 45:60.</li>
<li>If a recipe calls for 3 cups of flour to 2 cups of sugar, write the ratio of flour to sugar.</li>
</ul>
</article>

<article id="percentages">
<h2>Percentages</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Percentage means "per hundred."</li>
<li>Convert between fractions, decimals, and percentages.</li>
<li>Calculate percentages of a number.</li>
</ul>
<p><strong>Example:</strong></p>
<p>What is 20% of 150?</p>
<p>$20\% \times 150 = 0.20 \times 150 = 30$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Convert 3/4 to a percentage.</li>
<li>What is 15% of 250?</li>
</ul>
</article>

<article id="notation">
<h2>Scientific Notation</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Scientific notation expresses numbers as a product of a number between 1 and 10 and a power of 10.</li>
<li>Standard notation is the usual way of writing numbers.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Convert 4500 to scientific notation.</p>
<p>$4500 = 4.5 \times 10^3$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Convert 0.00034 to scientific notation.</li>
<li>Convert $$3.6 \times 10^4$$ to standard notation.</li>
</ul>
</article>

<article id="cartesian">
<h2>Plot Points on Cartesian Plane</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Points are written as (x, y).</li>
<li>The Cartesian plane has four quadrants.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Plot the point (3, -2).</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Plot the point (-4, 5).</li>
<li>Identify the coordinates of a point in Quadrant II.</li>
</ul>
</article>

<article id="squares">
<h2>Sum of Squares</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Sum of squares formula for first n natural numbers: $$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Find the sum of squares of the first 3 natural numbers.</p>
<p>$1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Find the sum of squares of the first 5 natural numbers.</li>
<li>Find the sum of squares of the numbers 4, 5, and 6.</li>
</ul>
</article>

<article id="graphing">
<h2>Graph a Line Given Equation</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>The equation of a line in slope-intercept form is $$y = mx + b$$, where m is the slope and b is the y-intercept.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Graph the line $$y = 2x + 3$$.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Graph the line $$y = -x + 2$$.</li>
<li>Graph the line $$y = \frac{1}{2}x - 4$$.</li>
</ul>
</article>

<article id="slope">
<h2>Determine Slope and Y-intercept from an Equation</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>In the equation $$y = mx + b$$, m is the slope and b is the y-intercept.</li>
</ul>
<p><strong>Example:</strong></p>
<p>For $$y = -3x + 5$$, the slope is -3 and the y-intercept is 5.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Determine the slope and y-intercept of $$y = 4x - 7$$.</li>
<li>Determine the slope and y-intercept of $$y = \frac{3}{2}x + 1$$.</li>
</ul>
</article>

<article id="linear-system">
<h2>Determine Slope and Y-intercept from a Graph</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Slope is the rise over run.</li>
<li>The y-intercept is where the line crosses the y-axis.</li>
</ul>
<p><strong>Example:</strong></p>
<p>If a line passes through (0, 2) and (3, 8), the slope is $$\frac{8-2}{3-0} = 2$$ and the y-intercept is 2.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Determine the slope and y-intercept of a line passing through (2, 5) and (4, 9).</li>
<li>Determine the slope and y-intercept of a line passing through (0, -3) and (2, 1).</li>
</ul>
</article>

<article id="scatter-plot">
<h2>State the Solution to a Linear System from a Graph</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>The solution is the point where the two lines intersect.</li>
</ul>
<p><strong>Example:</strong></p>
<p>If lines $$y = 2x + 1$$ and $$y = -x + 4$$ intersect at (1, 3), then (1, 3) is the solution.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Determine the solution from the graph of $$y = x + 2$$ and $$y = -2x + 5$$.</li>
<li>Find the intersection of $$y = \frac{1}{2}x - 1$$ and $$y = -x + 4$$.</li>
</ul>
</article>

<article id="scatter-plot">
<h2>Scatter Plot, Independent/Dependent Variable, Trend, Strength</h2>
<p><strong>Key Points:</strong></p>
<ul>
<li>Independent variable: horizontal axis.</li>
<li>Dependent variable: vertical axis.</li>
<li>Trend: general direction (positive, negative).</li>
<li>Strength: how closely data points fit the trend line.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Plot and analyze the scatter plot of data points: (1, 2), (2, 4), (3, 6), (4, 8).</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Create a scatter plot for the points: (2, 3), (3, 5), (5, 10), (6, 12).</li>
<li>Determine the trend and strength of the data.</li>
</ul>
</article>

<h3>Identify Linear/Non-linear Relation from Equation</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Linear: equations of the form $$y = mx + b$$.</li>
<li>Non-linear: equations involving squares, cubes, etc. (e.g., $$y = x^2 + 3$$).</li>
</ul>
<p><strong>Example:</strong></p>
<p>Identify if $$y = 3x^2 + 2x$$ is linear or non-linear.</p>
<p>Non-linear, because it includes $$x^2$$.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Is $$y = 4x - 7$$ linear or non-linear?</li>
<li>Is $$y = x^3 - 2x + 1$$ linear or non-linear?</li>
</ul>

<h3>Determine Linear Relation from Table of Values / Fill in Missing Values</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Linear relations have constant differences in y-values for equal changes in x-values.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Determine if the table represents a linear relation:</p>
<table>
<tr><th>x</th><th>y</th></tr>
<tr><td>1</td><td>3</td></tr>
<tr><td>2</td><td>5</td></tr>
<tr><td>3</td><td>7</td></tr>
<tr><td>4</td><td>9</td></tr>
</table>
<p>Yes, because the change in y is constant (2).</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Fill in missing value for the linear relation:</li>
</ul>
<table>
<tr><th>x</th><th>y</th></tr>
<tr><td>1</td><td>2</td></tr>
<tr><td>2</td><td>4</td></tr>
<tr><td>3</td><td>?</td></tr>
<tr><td>4</td><td>8</td></tr>
</table>
<ul>
<li>Is this a linear relation?</li>
</ul>
<table>
<tr><th>x</th><th>y</th></tr>
<tr><td>1</td><td>1</td></tr>
<tr><td>2</td><td>4</td></tr>
<tr><td>3</td><td>9</td></tr>
<tr><td>4</td><td>16</td></tr>
</table>

<h3>Graph Linear Inequality</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Similar to graphing a line but shade the appropriate side of the boundary line.</li>
<li>Use dashed lines for < or > and solid lines for ≤ or ≥.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Graph $$y < 2x + 3$$.</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Graph $$y \geq -x + 1$$.</li>
<li>Graph $$y \leq \frac{1}{2}x - 2$$.</li>
</ul>

<h3>Perimeter/Area of 2D Composite Shape</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Break the shape into simpler shapes.</li>
<li>Use formulas for perimeter and area of rectangles, triangles, etc.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Find the area of a shape composed of a rectangle (3x4) and a triangle (base 4, height 3).</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Find the perimeter of a shape made of two rectangles (5x2 and 3x2).</li>
<li>Find the area of a shape made of a rectangle (6x4) and a semicircle (radius 2).</li>
</ul>

<h3>Volume of 3D Shape</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Use formulas for volume of common shapes (e.g., cube $$V = a^3$$, cylinder $$V = \pi r^2 h$$).</li>
</ul>
<p><strong>Example:</strong></p>
<p>Find the volume of a cylinder with radius 3 and height 5.</p>
<p>$V = \pi (3)^2 (5) = 45\pi$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Find the volume of a cube with side length 4.</li>
<li>Find the volume of a rectangular prism with dimensions 2x3x4.</li>
</ul>

<h3>Determine Missing Angle Values, Including Theorem Used</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Use angle sum properties (e.g., sum of angles in a triangle is 180°).</li>
<li>Use theorems like corresponding, alternate interior angles, etc.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Find the missing angle in a triangle with angles 50° and 60°.</p>
<p>$50 + 60 + x = 180 \Rightarrow x = 70°$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Find the missing angle in a triangle with angles 45° and 85°.</li>
<li>Find the missing angle in a quadrilateral with angles 90°, 80°, and 95°.</li>
</ul>
</article>

<article id="choice">
<h2>Choice - 18 marks</h2>
<h3>Simplify an Expression Using Exponent Laws</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Use laws: $$a^m \cdot a^n = a^{m+n}$$, $$\frac{a^m}{a^n} = a^{m-n}$$, $$(a^m)^n = a^{mn}$$.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Simplify $$2^3 \cdot 2^4$$.</p>
<p>$2^3 \cdot 2^4 = 2^{3+4} = 2^7$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Simplify $$x^2 \cdot x^3$$.</li>
<li>Simplify $$\frac{y^5}{y^2}$$.</li>
</ul>

<p><strong>Key Points:</strong></p>
<ul>
<li>Combine like terms.</li>
<li>Use distributive property $$a(b + c) = ab + ac$$.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Simplify $$3x + 4x - 5$$.</p>
<p>$3x + 4x - 5 = 7x - 5$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Simplify $$2x^2 + 3x - x^2$$.</li>
<li>Expand and simplify $$2(x + 3) + 4(x - 1)$$.</li>
</ul>

<h3>Solve Equations</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Isolate the variable.</li>
<li>Perform the same operation on both sides.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Solve $$2x + 3 = 7$$.</p>
<p>$2x + 3 = 7 \Rightarrow 2x = 4 \Rightarrow x = 2$</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Solve $$3x - 4 = 11$$.</li>
<li>Solve $$5(x - 2) = 3x + 6$$.</li>
</ul>

<h3>Determine Equation of a Line (Given Information Like Graph, Parallel/Perpendicular to Another Line, etc.)</h3>
<p><strong>Key Points:</strong></p>
<ul>
<li>Use point-slope form $$y - y_1 = m(x - x_1)$$.</li>
<li>Parallel lines have equal slopes; perpendicular lines have negative reciprocal slopes.</li>
</ul>
<p><strong>Example:</strong></p>
<p>Find the equation of a line parallel to $$y = 2x + 3$$ passing through (1, 2).</p>
<p><strong>Practice:</strong></p>
<ul>
<li>Find the equation of a line perpendicular to $$y = \frac{1}{2}x + 4$$ passing through (0, 0).</li>
<li>Find the equation of a line passing through (2, 3) and (4, 7).</li>
</ul>
</article>
</div>
</section>
</body>
</html>