Untitled
unknown
plain_text
a year ago
20 kB
6
Indexable
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Grade 9 Math Exam Study Guide</title> <style> body { font-family: Arial, sans-serif; line-height: 1.6; margin: 0; padding: 0; background-color: #f4f4f4; } .container { width: 80%; margin: auto; overflow: hidden; } header { background: #333; color: #fff; padding-top: 30px; min-height: 70px; border-bottom: #777 3px solid; } header a { color: #fff; text-decoration: none; text-transform: uppercase; font-size: 16px; } header li { float: left; display: inline; padding: 0 20px 0 20px; } header #branding { float: left; } header #branding h1 { margin: 0; } header nav { float: right; margin-top: 10px; } header .highlight, header .current a { color: #e8491d; font-weight: bold; } header a:hover { color: #cccccc; font-weight: bold; } #showcase { min-height: 400px; background: url('showcase.jpg') no-repeat 0 -400px; text-align: center; color: #fff; } #showcase h1 { margin-top: 100px; font-size: 55px; margin-bottom: 10px; } #showcase p { font-size: 20px; } section { padding: 20px; margin-top: 20px; background: #fff; } .dark { padding: 15px; background: #333; color: #fff; margin-top: 10px; margin-bottom: 10px; } </style> </head> <body> <header> <div class="container"> <div id="branding"> <h1>Grade 9 Math Exam Study Guide</h1> </div> <nav> <ul> <li><a href="#ratios">Ratios</a></li> <li><a href="#percentages">Percentages</a></li> <li><a href="#notation">Scientific Notation</a></li> <li><a href="#cartesian">Cartesian Plane</a></li> <li><a href="#squares">Sum of Squares</a></li> <li><a href="#graphing">Graph a Line</a></li> <li><a href="#slope">Slope & Intercept</a></li> <li><a href="#linear-system">Linear Systems</a></li> <li><a href="#scatter-plot">Scatter Plot</a></li> <li><a href="#short-answer">Short Answer</a></li> <li><a href="#choice">Choice</a></li> </ul> </nav> </div> </header> <section id="main"> <div class="container"> <article id="ratios"> <h2>Ratios</h2> <p><strong>Key Points:</strong></p> <ul> <li>A ratio compares two quantities.</li> <li>Simplify ratios by dividing both terms by their greatest common divisor.</li> </ul> <p><strong>Example:</strong></p> <p>Simplify the ratio 18:24.</p> <p>\[ \frac{18}{24} = \frac{3}{4} \]</p> <p>So, the simplified ratio is 3:4.</p> <p><strong>Practice:</strong></p> <ul> <li>Simplify the ratio 45:60.</li> <li>If a recipe calls for 3 cups of flour to 2 cups of sugar, write the ratio of flour to sugar.</li> </ul> </article> <article id="percentages"> <h2>Percentages</h2> <p><strong>Key Points:</strong></p> <ul> <li>Percentage means "per hundred."</li> <li>Convert between fractions, decimals, and percentages.</li> <li>Calculate percentages of a number.</li> </ul> <p><strong>Example:</strong></p> <p>What is 20% of 150?</p> <p>\[ 20\% \times 150 = 0.20 \times 150 = 30 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Convert 3/4 to a percentage.</li> <li>What is 15% of 250?</li> </ul> </article> <article id="notation"> <h2>Scientific Notation</h2> <p><strong>Key Points:</strong></p> <ul> <li>Scientific notation expresses numbers as a product of a number between 1 and 10 and a power of 10.</li> <li>Standard notation is the usual way of writing numbers.</li> </ul> <p><strong>Example:</strong></p> <p>Convert 4500 to scientific notation.</p> <p>\[ 4500 = 4.5 \times 10^3 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Convert 0.00034 to scientific notation.</li> <li>Convert \( 3.6 \times 10^4 \) to standard notation.</li> </ul> </article> <article id="cartesian"> <h2>Plot Points on Cartesian Plane</h2> <p><strong>Key Points:</strong></p> <ul> <li>Points are written as (x, y).</li> <li>The Cartesian plane has four quadrants.</li> </ul> <p><strong>Example:</strong></p> <p>Plot the point (3, -2).</p> <p><strong>Practice:</strong></p> <ul> <li>Plot the point (-4, 5).</li> <li>Identify the coordinates of a point in Quadrant II.</li> </ul> </article> <article id="squares"> <h2>Sum of Squares</h2> <p><strong>Key Points:</strong></p> <ul> <li>Sum of squares formula for first n natural numbers: \( \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} \).</li> </ul> <p><strong>Example:</strong></p> <p>Find the sum of squares of the first 3 natural numbers.</p> <p>\[ 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Find the sum of squares of the first 5 natural numbers.</li> <li>Find the sum of squares of the numbers 4, 5, and 6.</li> </ul> </article> <article id="graphing"> <h2>Graph a Line Given Equation</h2> <p><strong>Key Points:</strong></p> <ul> <li>The equation of a line in slope-intercept form is \( y = mx + b \), where m is the slope and b is the y-intercept.</li> </ul> <p><strong>Example:</strong></p> <p>Graph the line \( y = 2x + 3 \).</p> <p><strong>Practice:</strong></p> <ul> <li>Graph the line \( y = -x + 2 \).</li> <li>Graph the line \( y = \frac{1}{2}x - 4 \).</li> </ul> </article> <article id="slope"> <h2>Determine Slope and Y-intercept from an Equation</h2> <p><strong>Key Points:</strong></p> <ul> <li>In the equation \( y = mx + b \), m is the slope and b is the y-intercept.</li> </ul> <p><strong>Example:</strong></p> <p>For \( y = -3x + 5 \), the slope is -3 and the y-intercept is 5.</p> <p><strong>Practice:</strong></p> <ul> <li>Determine the slope and y-intercept of \( y = 4x - 7 \).</li> <li>Determine the slope and y-intercept of \( y = \frac{3}{2}x + 1 \).</li> </ul> </article> <article id="linear-system"> <h2>Determine Slope and Y-intercept from a Graph</h2> <p><strong>Key Points:</strong></p> <ul> <li>Slope is the rise over run.</li> <li>The y-intercept is where the line crosses the y-axis.</li> </ul> <p><strong>Example:</strong></p> <p>If a line passes through (0, 2) and (3, 8), the slope is \( \frac{8-2}{3-0} = 2 \) and the y-intercept is 2.</p> <p><strong>Practice:</strong></p> <ul> <li>Determine the slope and y-intercept of a line passing through (2, 5) and (4, 9).</li> <li>Determine the slope and y-intercept of a line passing through (0, -3) and (2, 1).</li> </ul> </article> <article id="scatter-plot"> <h2>State the Solution to a Linear System from a Graph</h2> <p><strong>Key Points:</strong></p> <ul> <li>The solution is the point where the two lines intersect.</li> </ul> <p><strong>Example:</strong></p> <p>If lines \( y = 2x + 1 \) and \( y = -x + 4 \) intersect at (1, 3), then (1, 3) is the solution.</p> <p><strong>Practice:</strong></p> <ul> <li>Determine the solution from the graph of \( y = x + 2 \) and \( y = -2x + 5 \).</li> <li>Find the intersection of \( y = \frac{1}{2}x - 1 \) and \( y = -x + 4 \).</li> </ul> </article> <article id="scatter-plot"> <h2>Scatter Plot, Independent/Dependent Variable, Trend, Strength</h2> <p><strong>Key Points:</strong></p> <ul> <li>Independent variable: horizontal axis.</li> <li>Dependent variable: vertical axis.</li> <li>Trend: general direction (positive, negative).</li> <li>Strength: how closely data points fit the trend line.</li> </ul> <p><strong>Example:</strong></p> <p>Plot and analyze the scatter plot of data points: (1, 2), (2, 4), (3, 6), (4, 8).</p> <p><strong>Practice:</strong></p> <ul> <li>Create a scatter plot for the points: (2, 3), (3, 5), (5, 10), (6, 12).</li> <li>Determine the trend and strength of the data.</li> </ul> </article> <article id="short-answer"> <h2>Short Answer – 17 marks</h2> <h3>Identify Linear/Non-linear Relation from Equation</h3> <p><strong>Key Points:</strong></p> <ul> <li>Linear: equations of the form \( y = mx + b \).</li> <li>Non-linear: equations involving squares, cubes, etc. (e.g., \( y = x^2 + 3 \)).</li> </ul> <p><strong>Example:</strong></p> <p>Identify if \( y = 3x^2 + 2x \) is linear or non-linear.</p> <p>Non-linear, because it includes \( x^2 \).</p> <p><strong>Practice:</strong></p> <ul> <li>Is \( y = 4x - 7 \) linear or non-linear?</li> <li>Is \( y = x^3 - 2x + 1 \) linear or non-linear?</li> </ul> <h3>Determine Linear Relation from Table of Values / Fill in Missing Values</h3> <p><strong>Key Points:</strong></p> <ul> <li>Linear relations have constant differences in y-values for equal changes in x-values.</li> </ul> <p><strong>Example:</strong></p> <p>Determine if the table represents a linear relation:</p> <table> <tr><th>x</th><th>y</th></tr> <tr><td>1</td><td>3</td></tr> <tr><td>2</td><td>5</td></tr> <tr><td>3</td><td>7</td></tr> <tr><td>4</td><td>9</td></tr> </table> <p>Yes, because the change in y is constant (2).</p> <p><strong>Practice:</strong></p> <ul> <li>Fill in missing value for the linear relation:</li> </ul> <table> <tr><th>x</th><th>y</th></tr> <tr><td>1</td><td>2</td></tr> <tr><td>2</td><td>4</td></tr> <tr><td>3</td><td>?</td></tr> <tr><td>4</td><td>8</td></tr> </table> <ul> <li>Is this a linear relation?</li> </ul> <table> <tr><th>x</th><th>y</th></tr> <tr><td>1</td><td>1</td></tr> <tr><td>2</td><td>4</td></tr> <tr><td>3</td><td>9</td></tr> <tr><td>4</td><td>16</td></tr> </table> <h3>Graph Linear Inequality</h3> <p><strong>Key Points:</strong></p> <ul> <li>Similar to graphing a line but shade the appropriate side of the boundary line.</li> <li>Use dashed lines for < or > and solid lines for ≤ or ≥.</li> </ul> <p><strong>Example:</strong></p> <p>Graph \( y < 2x + 3 \).</p> <p><strong>Practice:</strong></p> <ul> <li>Graph \( y \geq -x + 1 \).</li> <li>Graph \( y \leq \frac{1}{2}x - 2 \).</li> </ul> <h3>Perimeter/Area of 2D Composite Shape</h3> <p><strong>Key Points:</strong></p> <ul> <li>Break the shape into simpler shapes.</li> <li>Use formulas for perimeter and area of rectangles, triangles, etc.</li> </ul> <p><strong>Example:</strong></p> <p>Find the area of a shape composed of a rectangle (3x4) and a triangle (base 4, height 3).</p> <p><strong>Practice:</strong></p> <ul> <li>Find the perimeter of a shape made of two rectangles (5x2 and 3x2).</li> <li>Find the area of a shape made of a rectangle (6x4) and a semicircle (radius 2).</li> </ul> <h3>Volume of 3D Shape</h3> <p><strong>Key Points:</strong></p> <ul> <li>Use formulas for volume of common shapes (e.g., cube \( V = a^3 \), cylinder \( V = \pi r^2 h \)).</li> </ul> <p><strong>Example:</strong></p> <p>Find the volume of a cylinder with radius 3 and height 5.</p> <p>\[ V = \pi (3)^2 (5) = 45\pi \]</p> <p><strong>Practice:</strong></p> <ul> <li>Find the volume of a cube with side length 4.</li> <li>Find the volume of a rectangular prism with dimensions 2x3x4.</li> </ul> <h3>Determine Missing Angle Values, Including Theorem Used</h3> <p><strong>Key Points:</strong></p> <ul> <li>Use angle sum properties (e.g., sum of angles in a triangle is 180°).</li> <li>Use theorems like corresponding, alternate interior angles, etc.</li> </ul> <p><strong>Example:</strong></p> <p>Find the missing angle in a triangle with angles 50° and 60°.</p> <p>\[ 50 + 60 + x = 180 \Rightarrow x = 70° \]</p> <p><strong>Practice:</strong></p> <ul> <li>Find the missing angle in a triangle with angles 45° and 85°.</li> <li>Find the missing angle in a quadrilateral with angles 90°, 80°, and 95°.</li> </ul> </article> <article id="choice"> <h2>Choice - 18 marks</h2> <h3>Simplify an Expression Using Exponent Laws</h3> <p><strong>Key Points:</strong></p> <ul> <li>Use laws: \( a^m \cdot a^n = a^{m+n} \), \( \frac{a^m}{a^n} = a^{m-n} \), \( (a^m)^n = a^{mn} \).</li> </ul> <p><strong>Example:</strong></p> <p>Simplify \( 2^3 \cdot 2^4 \).</p> <p>\[ 2^3 \cdot 2^4 = 2^{3+4} = 2^7 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Simplify \( x^2 \cdot x^3 \).</li> <li>Simplify \( \frac{y^5}{y^2} \).</li> </ul> <h3>Simplify a Polynomial (Add/Subtract/Distributive Property)</h3> <p><strong>Key Points:</strong></p> <ul> <li>Combine like terms.</li> <li>Use distributive property \( a(b + c) = ab + ac \).</li> </ul> <p><strong>Example:</strong></p> <p>Simplify \( 3x + 4x - 5 \).</p> <p>\[ 3x + 4x - 5 = 7x - 5 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Simplify \( 2x^2 + 3x - x^2 \).</li> <li>Expand and simplify \( 2(x + 3) + 4(x - 1) \).</li> </ul> <h3>Solve Equations</h3> <p><strong>Key Points:</strong></p> <ul> <li>Isolate the variable.</li> <li>Perform the same operation on both sides.</li> </ul> <p><strong>Example:</strong></p> <p>Solve \( 2x + 3 = 7 \).</p> <p>\[ 2x + 3 = 7 \Rightarrow 2x = 4 \Rightarrow x = 2 \]</p> <p><strong>Practice:</strong></p> <ul> <li>Solve \( 3x - 4 = 11 \).</li> <li>Solve \( 5(x - 2) = 3x + 6 \).</li> </ul> <h3>Determine Equation of a Line (Given Information Like Graph, Parallel/Perpendicular to Another Line, etc.)</h3> <p><strong>Key Points:</strong></p> <ul> <li>Use point-slope form \( y - y_1 = m(x - x_1) \).</li> <li>Parallel lines have equal slopes; perpendicular lines have negative reciprocal slopes.</li> </ul> <p><strong>Example:</strong></p> <p>Find the equation of a line parallel to \( y = 2x + 3 \) passing through (1, 2).</p> <p><strong>Practice:</strong></p> <ul> <li>Find the equation of a line perpendicular to \( y = \frac{1}{2}x + 4 \) passing through (0, 0).</li> <li>Find the equation of a line passing through (2, 3) and (4, 7).</li> </ul> </article> </div> </section> </body> </html>
Editor is loading...
Leave a Comment