Untitled
unknown
plain_text
a year ago
4.0 kB
3
Indexable
def get_uv(scaling_matrix_inv, u, s, v, k): if v.device != scaling_matrix_inv.device: scaling_matrix_inv = scaling_matrix_inv.to(v.device) v = v @ scaling_matrix_inv svd_u = u[:, :k] svd_s = s[:k] svd_v = v[:k, :] sqrt_s = torch.diag(torch.sqrt(svd_s)) if svd_u.device != sqrt_s.device: print('svd u s device: ', svd_u.device, sqrt_s.device) svd_u = svd_u.to(sqrt_s.device) if sqrt_s.device != svd_v.device: print('svd s v device: ', sqrt_s.device, svd_v.device) svd_v = svd_v.to(sqrt_s.device) u=(svd_u @ sqrt_s).T v=(sqrt_s @ svd_v).T return u, v for name, module in model.named_modules(): if isinstance(module, LlamaMLP): del module.gate_proj del module.up_proj del module.down_proj utils.clear_torch_cache() suffix_list = ["gate_proj", "up_proj", "down_proj"] for suffix in suffix_list: module.register_buffer(f'{suffix}_use', torch.Tensor([False])) u = torch.load(os.path.join(dump_dest, f"{name}.{suffix}.u"), map_location=torch.device(infer_device())) s = torch.load(os.path.join(dump_dest, f"{name}.{suffix}.s"), map_location=torch.device(infer_device())) v = torch.load(os.path.join(dump_dest, f"{name}.{suffix}.v"), map_location=torch.device(infer_device())) scaling_matrix_inv = torch.load(os.path.join(dump_dest, f"{name}.{suffix}.scaling_matrix_inv"), map_location=torch.device(infer_device())) # 读取当前层的 desired rank k = desired_rank_pref[f'{layer_idx}'][suffix][0] u, v = get_uv(scaling_matrix_inv, u, s, v, k) print('get u v: ', name, suffix, k, u.shape, v.shape, u.device, v.device) if suffix == "gate_proj": module.register_buffer('gate_weight_U_top', v.t().to(torch.bfloat16)) module.register_buffer('gate_weight_SVh_top', u.t().to(torch.bfloat16)) elif suffix == "up_proj": module.register_buffer('up_weight_U_top', v.t().to(torch.bfloat16)) module.register_buffer('up_weight_SVh_top', u.t().to(torch.bfloat16)) else: module.register_buffer('down_weight_U_top', v.t().to(torch.bfloat16)) module.register_buffer('down_weight_SVh_top', u.t().to(torch.bfloat16)) del u del s del v del scaling_matrix_inv utils.clear_torch_cache() if isinstance(module, LlamaAttention): suffix_list = ["q_proj", "k_proj"] for suffix in suffix_list: u = torch.load(os.path.join(dump_dest_attn, f"{name}.{suffix}.u"), map_location=torch.device(infer_device())) s = torch.load(os.path.join(dump_dest_attn, f"{name}.{suffix}.s"), map_location=torch.device(infer_device())) v = torch.load(os.path.join(dump_dest_attn, f"{name}.{suffix}.v"), map_location=torch.device(infer_device())) scaling_matrix_inv = torch.load(os.path.join(dump_dest_attn, f"{name}.{suffix}.scaling_matrix_inv"), map_location=torch.device(infer_device())) # 读取当前层的 desired rank k = desired_rank_pref[f'{layer_idx}'][suffix][0] u, v = get_uv(scaling_matrix_inv, u, s, v, k) print('attn get u v: ', name, suffix, k, u.shape, v.shape, u.device, v.device) if suffix == "q_proj": module.register_buffer('q_weight_U_top', v.t().to(torch.bfloat16)) module.register_buffer('q_weight_SVh_top', u.t().to(torch.bfloat16)) else: module.register_buffer('k_weight_U_top', v.t().to(torch.bfloat16)) module.register_buffer('k_weight_SVh_top', u.t().to(torch.bfloat16)) del u del s del v del scaling_matrix_inv utils.clear_torch_cache()
Editor is loading...
Leave a Comment