Artificial intelligence
unknown
python
10 months ago
1.8 kB
3
Indexable
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM import numpy as np # Seed for reproducibility np.random.seed(42) tf.random.set_seed(42) # Simulated sensory input data (e.g., visual, auditory) input_data = np.random.random((1000, 10)) # 1000 samples, 10 features each # Simulated memory function (LSTM) memory_model = Sequential([ LSTM(50, input_shape=(10, 1), return_sequences=False), Dense(20, activation='relu') ]) memory_model.compile(optimizer='adam', loss='mse') # Reshape input data for LSTM input_data_reshaped = input_data.reshape((1000, 10, 1)) # Training memory model to simulate memory encoding memory_model.fit(input_data_reshaped, np.random.random((1000, 20)), epochs=10) # Simulated decision-making function (Dense Network) decision_model = Sequential([ Dense(64, input_dim=20, activation='relu'), Dense(32, activation='relu'), Dense(2, activation='softmax') # Binary decision output ]) decision_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Generate pseudo-memory outputs to simulate past experiences memory_outputs = memory_model.predict(input_data_reshaped) # Simulated decision labels (random binary outcomes) decision_labels = np.random.randint(2, size=(1000, 1)) decision_labels = tf.keras.utils.to_categorical(decision_labels, 2) # Training decision-making model decision_model.fit(memory_outputs, decision_labels, epochs=10) # Simulated new sensory input for testing new_input = np.random.random((1, 10)).reshape((1, 10, 1)) # Simulated memory recall memory_output = memory_model.predict(new_input) # Simulated decision based on recalled memory decision_output = decision_model.predict(memory_output) print("Simulated decision output:", decision_output)
Editor is loading...