Untitled
unknown
plain_text
2 years ago
1.0 kB
3
Indexable
def upsample(features, target, repeat): features_zeros = features[target == 0] features_ones = features[target == 1] target_zeros = target[target == 0] target_ones = target[target == 1] features_upsampled = pd.concat([features_zeros] + [features_ones] * repeat) target_upsampled = pd.concat([target_zeros] + [target_ones] * repeat) features_upsampled, target_upsampled = shuffle( features_upsampled, target_upsampled, random_state=1234 ) return features_upsampled, target_upsampled features_upsampled, target_upsampled = upsample( features_train, target_train, 10 ) RFmodel = RandomForestClassifier(random_state=1234,n_estimators=8) RFmodel.fit(features_upsampled,target_upsampled) RFpredic_valid = RFmodel.predict(features_valid) RFprob_valid = RFmodel.predict_proba(features_valid) print('Precision:',precision_score(target_valid,RFpredic_valid)) print('Recall:',recall_score(target_valid,RFpredic_valid)) print('F1 Score:', f1_score(target_valid, RFpredic_valid))
Editor is loading...
Leave a Comment