Untitled
unknown
plain_text
a year ago
1.1 kB
8
Indexable
# Descriptive statistics desc_stats = df.describe(include='all', datetime_is_numeric=True) # Grouping and Aggregation grouped_df = df.groupby(['transaction_date', 'label']).agg({ 'total_monthly_litres_dil': 'sum', 'MO_dealer_monthly_ton_GZPN': 'mean', 'KP_dealer_monthly_ton_GZPN': 'mean', 'MO_KP_dealer_monthly_ton_GZPN': 'mean', 'client_inn_dil': 'count' }).reset_index() # Plotting fig, ax1 = plt.subplots(figsize=(12, 6)) # Plotting total monthly litres colors = {'MO': 'blue', 'KP': 'green', 'MO_KP': 'red', 'Other': 'gray'} grouped_df['color'] = grouped_df['label'].apply(lambda x: colors[x]) for label, group in grouped_df.groupby('label'): ax1.scatter(group['transaction_date'], group['total_monthly_litres_dil'], label=label, color=colors[label], s=50) ax1.set_xlabel('Transaction Date') ax1.set_ylabel('Total Monthly Litres', color='tab:blue') ax1.tick_params(axis='y', labelcolor='tab:blue') ax1.legend(title='Cluster') plt.title('Total Monthly Litres by Cluster Over Time') plt.xticks(rotation=45) plt.tight_layout() plt.show() desc_stats, grouped_df.head()
Editor is loading...
Leave a Comment