Untitled
unknown
plain_text
3 years ago
9.5 kB
8
Indexable
#bibliotecas necessárias
library(corrplot)
library(car)
library(usdm)
library(gvlma)
library(MASS)
library(leaps)
library(ggplot2)
###### Função tabela ANOVA
# Credits to: Russell Steele
# Build Anova table in classic format
anova_reg = function (object, reg_collapse=TRUE,...)
{
if (length(list(object, ...)) > 1L)
return(anova.lmlist(object, ...))
if (!inherits(object, "lm"))
warning("calling anova.lm(<fake-lm-object>) ...")
w <- object$weights
ssr <- sum(if (is.null(w)) object$residuals^2 else w * object$residuals^2)
mss <- sum(if (is.null(w)) object$fitted.values^2 else w *
object$fitted.values^2)
if (ssr < 1e-10 * mss)
warning("ANOVA F-tests on an essentially perfect fit are unreliable")
dfr <- df.residual(object)
p <- object$rank
if (p > 0L) {
p1 <- 1L:p
comp <- object$effects[p1]
asgn <- object$assign[stats:::qr.lm(object)$pivot][p1]
nmeffects <- c("(Intercept)", attr(object$terms, "term.labels"))
tlabels <- nmeffects[1 + unique(asgn)]
ss <- c(vapply(split(comp^2, asgn), sum, 1), ssr)
df <- c(lengths(split(asgn, asgn)), dfr)
if(reg_collapse){
if(attr(object$terms, "intercept")){
collapse_p<-2:(length(ss)-1)
ss<-c(ss[1],sum(ss[collapse_p]),ss[length(ss)])
df<-c(df[1],sum(df[collapse_p]),df[length(df)])
tlabels<-c(tlabels[1],"Source")
} else{
collapse_p<-1:(length(ss)-1)
ss<-c(sum(ss[collapse_p]),ss[length(ss)])
df<-c(df[1],sum(df[collapse_p]),df[length(df)])
tlabels<-c("Regression")
}
}
}else {
ss <- ssr
df <- dfr
tlabels <- character()
if(reg_collapse){
collapse_p<-1:(length(ss)-1)
ss<-c(sum(ss[collapse_p]),ss[length(ss)])
df<-c(df[1],sum(df[collapse_p]),df[length(df)])
}
}
ms <- ss/df
f <- ms/(ssr/dfr)
P <- pf(f, df, dfr, lower.tail = FALSE)
table <- data.frame(df, ss, ms, f, P)
table <- rbind(table,
colSums(table))
if (attr(object$terms, "intercept")){
table$ss[nrow(table)]<- table$ss[nrow(table)] - table$ss[1]
}
table$ms[nrow(table)]<-table$ss[nrow(table)]/table$df[nrow(table)]
table[length(P):(length(P)+1), 4:5] <- NA
dimnames(table) <- list(c(tlabels, "Error","Total"),
c("Df","SS", "MS", "F",
"P"))
if (attr(object$terms, "intercept")){
table <- table[-1, ]
table$MS[nrow(table)]<-table$MS[nrow(table)]*(table$Df[nrow(table)])/(table$Df[nrow(table)]-1)
table$Df[nrow(table)]<-table$Df[nrow(table)]-1
}
structure(table, heading = c("Analysis of Variance Table\n"),
class = c("anova", "data.frame"))
}
###########################
####TRATAMENTO DE DADOS####
dados <- read.delim("Trabalho10_Dados.txt", header= FALSE, sep="")
#escolha dos dados pedidos no enunciado
dados <- dados[,2:13]
names(dados)<- c("Age", "Height", "Sex", "Survival", "Shock.Type", "Systolic.Pressure",
"Mean.Arterial.Pressure", "Heart.Rate", "Diastolic.Pressure", "Mean.Central.Venous.Pressure",
"Body.Surface.Area", "Cardiac.Index")
rows <- nrow(dados)
even_rows <- seq_len(rows) %% 2
dados_inicial <- dados[even_rows == 1,]
rownames(dados_inicial) <- NULL #renumerar linhas
nrows <- nrow(dados_inicial)
#transformar qualitativas
qualitativas <- c("Sex", "Survival", "Shock.Type")
for (i in 1:ncol(dados_inicial)){
if (names(dados_inicial[i]) %in% qualitativas){
dados_inicial[,i] <- factor(dados_inicial[,i])
}
}
#formato correto
dados_inicial$Mean.Central.Venous.Pressure <- dados_inicial$Mean.Central.Venous.Pressure * 10^-1
dados_inicial$Body.Surface.Area <- dados_inicial$Body.Surface.Area * 10^-2
dados_inicial$Cardiac.Index <- dados_inicial$Cardiac.Index * 10^-2
###ANALISE DE DADOS###
summary(dados_inicial)
#box.plot continuas
dados_cont <- dados_inicial[ ,-c(match(qualitativas, names(dados_inicial)))]
par(mfrow = c(3, ncol(dados_cont)/3), mar=c(2,2,2,2), cex=0.5)
lapply(1:ncol(dados_cont), function(i) boxplot(dados_cont[,i], main=names(dados_cont)[i]))
#correlações
a <- cor(data.matrix(dados_cont))
dev.off()
corrplot(a, method = 'color', addCoef.col = 'black',
number.cex = 0.45, tl.cex = 0.5, tl.col="black")
#variavel resposta
y <- matrix(dados_inicial$Cardiac.Index)
dados_inicial <- dados_inicial[,-ncol(dados_inicial)]
dados_cont <- dados_cont[-length(dados_cont)]
#eliminar Mean Arterial Pressure
vifstep(dados_cont, th=10)
dados_inicial <- dados_inicial[, -which(colnames(dados_inicial) %in% c("Mean.Arterial.Pressure"))]
#analisar correlacoes das categoricas???
#separar dados de treino e de teste
set.seed(73)
teste_ind<-sort(sample(nrows,0.2*nrows))
#Treino
dados_treino <-dados_inicial[-teste_ind,]
y_treino <- y[-teste_ind]
summary(dados_treino)
#Teste
dados_teste <- dados_inicial[teste_ind,]
y_teste <- y[teste_ind]
####ANALISE PRELIMINAR DO MODELO COMPLETO####
#modelo completo com covariaveis eliminadas
mrl.comp <- mrl.comp <-lm(y_treino ~ .,data=dados_treino)
plot(mrl.comp)
summary(mrl.comp)
extractAIC(mrl.comp)
gvlma(mrl.comp)
#gráfico de previsões
pred_comp <- predict(mrl.comp, newdata = dados_teste)
d<-data.frame(pred_comp, y=y_teste)
ggplot(d, aes(pred_comp, y)) +
geom_point(shape = 16, size = 3, show.legend = FALSE) +
geom_abline(intercept = 0, slope = 1, color = "red")
#y não cumpre normalidade
shapiro.test(y_treino) #p-value = 5.896e-05
#boxcox para por y normal
b <- boxcox(lm(y_treino ~ 1))
lambda <- b$x[which.max(b$y)] #lambda=0.3434343...
y_treino2 <- (y_treino^lambda-1)/lambda
shapiro.test(y_treino2) #p-value = 0.5483 > 0.25
y_teste2 <- (y_teste^lambda-1)/lambda #usa-se o mesmo lambda para que treino e teste tenham o mesmo "significado"
shapiro.test(y_teste2) #p-value = 0.9791 > 0.25
#plot(lm(y_treino2 ~.,data=dados_treino))
##outliers y
boxplot(y_treino2)
boxplot(y_treino2)$out
#modelo com y_treino normal
mrl.comp2 <-lm(y_treino2 ~ .,data=dados_treino)
#plot(mrl.comp2) #mais proximo de normal
summary(mrl.comp2)
extractAIC(mrl.comp2)
gvlma(mrl.comp2)
#grafico de previsoes
pred_comp2 <- predict(mrl.comp2, newdata = dados_teste)
d<-data.frame(pred_comp2, y=y_teste2)
ggplot(d, aes(pred_comp2, y)) +
geom_point(shape = 16, size = 3, show.legend = FALSE) +
geom_abline(intercept = 0, slope = 1, color = "red")
###stepforward###
#1 - sem interações
mrl.base <-lm(y_treino2~1,
data=dados_treino)
mrl.stepforward <- step(mrl.base,
scope = list(upper = formula(mrl.comp2),
lower = formula(mrl.base)),
direction = "forward", trace="FALSE")
summary(mrl.stepforward)
extractAIC(mrl.stepforward)
anova(mrl.stepforward, mrl.comp2)
formula(mrl.stepforward)
#2- int 2 a 2
mrl.int2 <- lm(y_treino2 ~ (Shock.Type + Sex + Diastolic.Pressure + Systolic.Pressure +
Age + Body.Surface.Area)^2,
data = dados_treino)
mrl.stepforward2 <- step(mrl.stepforward,
scope = list(upper = formula(mrl.int2),
lower = formula(mrl.stepforward)),
direction = "forward", trace="FALSE")
summary(mrl.stepforward2)
extractAIC(mrl.stepforward2)
anova(mrl.stepforward2, mrl.int2)
formula(mrl.stepforward2)
#testar se se considera a única interacao 3 a 3 possivel (nao)
mrl.int3 <- update(mrl.stepforward2, .~. + Sex:Body.Surface.Area:Diastolic.Pressure)
extractAIC(mrl.int3) #menor do que o do stepforward2, logo nao se considera a interacao 3 a 3
###stepbackward###
#1 - sem interacoes
mrl.stepbackward <- step(mrl.comp2, direction = "backward", trace=FALSE)
summary(mrl.stepbackward)
extractAIC(mrl.stepbackward)
anova(mrl.stepbackward, mrl.comp2)
formula(mrl.stepbackward) #tem as mesmas variaveis que stepforward
#2 - interacoes 2 a 2
mrl.stepbackward2 <- step(mrl.int2, direction = "backward", trace=FALSE)
summary(mrl.stepbackward2)
extractAIC(mrl.stepbackward2)
anova(mrl.stepbackward2, mrl.int2)
formula(mrl.stepbackward2)
#testar se se considera a única interacao 3 a 3 possivel (nao)
mrl.intb3 <- update(mrl.stepbackward2, .~. + Sex:Body.Surface.Area:Diastolic.Pressure)
extractAIC(mrl.intb3) #menor do que o do stepbackward2, logo nao se considera a interacao 3 a 3
###bestsubset###
#bestsubset com r^2 ajustado
bestsubsetsR <- leaps(dados_treino[,-c(3,4,5)], y_treino2, method="adjr2")
best.fitR<-bestsubsetsR$which[which.max(bestsubsetsR$adjr2),]
best.fitR<-which(best.fitR)
best.fitR <- ifelse(best.fitR > 2, best.fitR + 3, best.fitR)
best.fitR<-c(3,4,5,best.fitR)
mrl.bestR <- lm(y_treino2 ~ .,data=dados_treino[,best.fitR])
summary(mrl.bestR)
extractAIC(mrl.bestR)
anova(mrl.bestR, mrl.comp2)
formula(mrl.bestR)
#escolhemos o stepforward2
##OUTLIERS e ptos influentes
outlierTest(mrl.stepforward2)
influencePlot(mrl.stepforward2)
##VALIDACAO
##teste das hipoteses iniciais
gvlma(mrl.stepforward2)
anova_reg(mrl.stepforward2)
plot(mrl.stepforward2)
ncvTest(mrl.stepforward2)
shapiro.test(mrl.stepforward2$residuals)
durbinWatsonTest(mrl.stepforward2)
plot(mrl.stepforward2$residuals, type = "l")
#gráfico de previsões - desfazendo boxcox (???)
pred_final <- predict(mrl.stepforward2, newdata = dados_teste)
d<-data.frame(pred_comp, y=y_teste)
ggplot(d, aes(pred_comp, y)) +
geom_point(shape = 16, size = 3, show.legend = FALSE) +
geom_abline(intercept = 0, slope = 1, color = "red")Editor is loading...