Untitled
unknown
plain_text
2 years ago
4.2 kB
4
Indexable
from sklearn.metrics import pairwise_distances import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from feature_engineering import * processed_data=feature_engineering() df=processed_data label_enc = LabelEncoder() df['role_name_encoded'] = label_enc.fit_transform(df['role_name']) df['role_name_decoded'] = label_enc.inverse_transform(df['role_name_encoded']) X=df.drop(columns=['person_who_resolved','role_name_decoded']) #print(X.head()) Y=df['person_who_resolved'] print(Y.head()) # Link the X vector with index index = X.index.values def get_top_5_person_who_resolved(df, row, distance_metric='cosine'): # Concatenate the input data into a single string input_data = ' '.join([str(row['ticket_category']), str(row['ticket_type']), str(row['ticket_item']),str(row['ticket_summary']), str(row['ticket_severity']),str(row['resolution_sla_violated']),str(row['reopen_count']), str(row['owner_user_id']),str(row['role_name_encoded']),str(row['ticket_resolution_time'])]) # Calculate the pairwise distances between the input vector and X input_vector_x = np.array(list(row[['ticket_category', 'ticket_type', 'ticket_item','ticket_summary', 'ticket_severity', 'resolution_sla_violated', 'reopen_count', 'owner_user_id','role_name_encoded','ticket_resolution_time']])) if distance_metric == 'cosine': distances = pairwise_distances(input_vector_x.reshape(1, -1), X[['ticket_category', 'ticket_type', 'ticket_item','ticket_summary', 'ticket_severity', 'resolution_sla_violated', 'reopen_count', 'owner_user_id','role_name_encoded','ticket_resolution_time']], metric='cosine')[0] elif distance_metric == 'euclidean': distances = pairwise_distances(input_vector_x.reshape(1, -1), X[['ticket_category', 'ticket_type', 'ticket_item','ticket_summary', 'ticket_severity', 'resolution_sla_violated', 'reopen_count', 'owner_user_id','role_name_encoded','ticket_resolution_time']], metric='euclidean')[0] elif distance_metric == 'manhattan': distances = pairwise_distances(input_vector_x.reshape(1, -1), X[['ticket_category', 'ticket_type', 'ticket_item','ticket_summary', 'ticket_severity', 'resolution_sla_violated', 'reopen_count', 'owner_user_id','role_name_encoded','ticket_resolution_time']], metric='manhattan')[0] else: raise ValueError('Invalid distance metric') # Get the indices of the top 5 closest tickets closest_indices = np.argsort(distances)[:5] # Get the person_who_resolved, owner_user_id, and role_name values for the closest tickets closest_person_who_resolved = df.iloc[closest_indices]['person_who_resolved'] closest_owner_user_id = df.iloc[closest_indices]['owner_user_id'] closest_role_name_encoded = df.iloc[closest_indices]['role_name_encoded'] closest_role_name_decoded = df.iloc[closest_indices]['role_name_decoded'] # Get the actual person_who_resolved, owner_user_id, and role_name value for the input ticket actual_person_who_resolved = row['person_who_resolved'] actual_owner_user_id = row['owner_user_id'] actual_role_name_encoded = row['role_name_encoded'] actual_role_name_decoded = row['role_name_decoded'] return list(zip(closest_person_who_resolved, closest_owner_user_id, closest_role_name_decoded)), (actual_person_who_resolved, actual_owner_user_id, actual_role_name_decoded) # Split the data into training and testing sets train_data, test_data = train_test_split(X,Y,test_size=0.2, random_state=42) print(train_data.head()) print(test_data.head()) # Apply the function to each row of the test data to get the recommendations #test_data['recommendations'], test_data['actual_person_who_resolved'] = zip(*test_data.apply(lambda row: get_top_5_person_who_resolved(train_data, row), axis=1)) # Remove duplicate values from recommendations #test_data['recommendations'] = test_data['recommendations'].apply(lambda x: list(set(x))) #test_data.head()
Editor is loading...