Untitled
unknown
plain_text
a year ago
1.2 kB
8
Indexable
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler ds = pd.read_csv("/content/IRIS.csv") print(ds) x = ds.drop('species', axis=1) y = ds['species'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) from sklearn.svm import SVC svm_classifier = SVC(kernel='poly') svm_classifier.fit(x_train, y_train) y_pred = svm_classifier.predict(x_test) from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) x = ds.drop('species', axis=1) y = ds['species'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) from sklearn.svm import SVC svm_classifier = SVC(kernel='rbf') svm_classifier.fit(x_train, y_train) y_pred = svm_classifier.predict(x_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) print("Confusion Matrix:") print(cm) from sklearn.metrics import classification_report report = classification_report(y_test, y_pred) print("Classification Report:") print(report)
Editor is loading...
Leave a Comment