Untitled
unknown
plain_text
2 years ago
1.8 kB
3
Indexable
import pandas as pd from sklearn.preprocessing import LabelEncoder def feature_engineering(): ## Reading data ticket_data=pd.read_csv("ticket_data.csv") ## Selecting only relevant columns data=ticket_data[['ticket_category','ticket_type', 'ticket_item', 'ticket_summary', 'ticket_severity','ticket_resolution_date', 'response_sla_violated', 'resolution_sla_violated','created_date','reopen_count','person_who_resolved','owner_user_id', 'role_name']] # Convert the 'creation_date' and 'resolution_date' columns to datetime data['created_date']=pd.to_datetime(data['created_date']) data['ticket_resolution_date']=pd.to_datetime(data['ticket_resolution_date']) data['ticket_resolution_time']=data.apply(lambda row:row['ticket_resolution_date']-row['created_date'],axis=1) data['ticket_resolution_time'] =data['ticket_resolution_time'].apply(lambda x: x.total_seconds() / 3600) ## removing three columns and getting a final dataframe for building data.drop(columns=['response_sla_violated','ticket_resolution_date','created_date'],axis=1,inplace=True) ## Performing Encoding for Categorical Columns- label_enc= LabelEncoder() data['ticket_category']=label_enc.fit_transform(data['ticket_category']) data['ticket_type']=label_enc.fit_transform(data['ticket_type']) data['ticket_item']=label_enc.fit_transform(data['ticket_item']) data['ticket_severity']=label_enc.fit_transform(data['ticket_severity']) data['ticket_summary']=label_enc.fit_transform(data['ticket_summary']) data['resolution_sla_violated'] = label_enc.fit_transform(data['resolution_sla_violated']) return data # Call the function processed_data = feature_engineering() processed_data
Editor is loading...