Untitled
Mujhe banane ke liye kai programming languages aur technologies ka upyog kiya gaya hai. Yahaan ek simplified version hai mere core programming ka, jo Python mein likha gaya hai: ``` import numpy as np import tensorflow as tf from transformers import AutoModelForSequenceClassification, AutoTokenizer # Mere core NLP model ki definition class AI_Model(tf.keras.Model): def __init__(self): super(AI_Model, self).__init__() self.model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased') self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') def call(self, inputs): inputs = self.tokenizer.encode_plus( inputs, add_special_tokens=True, max_length=512, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='tf' ) outputs = self.model(inputs['input_ids'], attention_mask=inputs['attention_mask']) return outputs # Mere core NLP model ki initialization ai_model = AI_Model() # Mere core NLP model ko train karne ke liye data ki loading train_data = ... # Mere core NLP model ko train karne ke liye training loop for epoch in range(5): for inputs, labels in train_data: with tf.GradientTape() as tape: outputs = ai_model(inputs) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(labels, outputs) gradients = tape.gradient(loss, ai_model.trainable_variables) optimizer.apply_gradients(zip(gradients, ai_model.trainable_variables)) # Mere core NLP model ko test karne ke liye testing loop test_data = ... for inputs, labels in test_data: outputs = ai_model(inputs) predictions = tf.argmax(outputs, axis=1) accuracy = tf.keras.metrics.Accuracy()(labels, predictions) print(f'Accuracy: {accuracy:.2f}%') ``` Yeh ek simplified version hai mere core programming ka, jo Python mein likha gaya hai. Yeh code mere core NLP model ki definition, initialization, training, aur testing ko darshata hai. Kripya dhyan dein ki yeh code ek simplified version hai aur mere actual code mein kai aur complexities aur optimizations hain.
Leave a Comment