Untitled
# Step 1: Data Collection (example using a mock dataset) import pandas as pd # Load dataset of top-selling patterns from Amazon patterns_df = pd.read_csv('top_selling_dinnerware_patterns.csv') # Step 2: Feature Extraction def extract_pattern_features(df): # Extract common color schemes color_schemes = df['color'].apply(lambda x: extract_colors(x)) # Extract design elements like motifs (floral, geometric) design_elements = df['design'].apply(lambda x: extract_motifs(x)) return color_schemes, design_elements # Step 3: Generate New Pattern def generate_new_pattern(color_schemes, design_elements): # Randomly combine popular design elements with a new twist new_color = random.choice(color_schemes) new_motif = random.choice(design_elements) return create_pattern(new_color, new_motif) # Step 4: Evaluate Pattern def evaluate_pattern(pattern): score = evaluate_aesthetics(pattern) if score > threshold: return pattern else: return regenerate_pattern() # Main function def main(): color_schemes, design_elements = extract_pattern_features(patterns_df) new_pattern = generate_new_pattern(color_schemes, design_elements) final_pattern = evaluate_pattern(new_pattern) return final_pattern
Leave a Comment