Untitled
unknown
plain_text
a year ago
1.3 kB
6
Indexable
# Step 1: Data Collection (example using a mock dataset)
import pandas as pd
# Load dataset of top-selling patterns from Amazon
patterns_df = pd.read_csv('top_selling_dinnerware_patterns.csv')
# Step 2: Feature Extraction
def extract_pattern_features(df):
# Extract common color schemes
color_schemes = df['color'].apply(lambda x: extract_colors(x))
# Extract design elements like motifs (floral, geometric)
design_elements = df['design'].apply(lambda x: extract_motifs(x))
return color_schemes, design_elements
# Step 3: Generate New Pattern
def generate_new_pattern(color_schemes, design_elements):
# Randomly combine popular design elements with a new twist
new_color = random.choice(color_schemes)
new_motif = random.choice(design_elements)
return create_pattern(new_color, new_motif)
# Step 4: Evaluate Pattern
def evaluate_pattern(pattern):
score = evaluate_aesthetics(pattern)
if score > threshold:
return pattern
else:
return regenerate_pattern()
# Main function
def main():
color_schemes, design_elements = extract_pattern_features(patterns_df)
new_pattern = generate_new_pattern(color_schemes, design_elements)
final_pattern = evaluate_pattern(new_pattern)
return final_pattern
Editor is loading...
Leave a Comment