Untitled

mail@pastecode.io avatar
unknown
python
8 months ago
5.9 kB
0
Indexable
Never
class MyDecisionTreeNode:
    """
    Auxiliary class serving as representation of a decision tree node
    """

    def __init__(
            self,
            meta: 'MyDecisionTreeClassifier',
            depth,
            node_type: NodeType = NodeType.REGULAR,
            predicted_class: tp.Optional[tp.Union[int, str]] = None,
            left_subtree: tp.Optional['MyDecisionTreeNode'] = None,
            right_subtree: tp.Optional['MyDecisionTreeNode'] = None,
            feature_id: int = None,
            threshold: float = None,
            impurity: float = np.inf
    ):
        """
        :param meta: object, holding meta information about tree
        :param depth: depth of this node in a tree (is deduced on creation by depth of ancestor)
        :param node_type: 'regular' or 'terminal' depending on whether this node is a leaf node
        :param predicted_class: class label assigned to a terminal node
        :param feature_id: index if feature to split by
        :param
        """
        self._node_type = node_type
        self._meta = meta
        self._depth = depth
        self._predicted_class = predicted_class
        self._class_proba = None
        self._left_subtree = left_subtree
        self._right_subtree = right_subtree
        self._feature_id = feature_id
        self._threshold = threshold
        self._impurity = impurity

    def _best_split(self, X: np.ndarray, y: np.ndarray):
        """
        finds best split
        :param X: Data, passed to node
        :param y: labels
        :return: best feature, best threshold, left child impurity, right child impurity
        """
        lowest_impurity = np.inf
        best_feature_id = None
        best_threshold = None
        lowest_left_child_impurity, lowest_right_child_impurity = None, None

        features = self._meta.rng.permutation(X.shape[1])  # permutated indexes of features

        for feature in features:
            current_feature_values = X[:, feature]  # values of feature at index=feature
            thresholds = np.unique(current_feature_values)

            for threshold in thresholds:
                # find indices for split with current threshold
                left_idx, right_idx = create_split(current_feature_values, threshold)
                current_weighted_impurity, current_left_impurity, current_right_impurity = \
                    weighted_impurity(y[left_idx], y[right_idx])
                if current_weighted_impurity < lowest_impurity:
                    lowest_impurity = current_weighted_impurity
                    best_feature_id = feature
                    best_threshold = threshold
                    lowest_left_child_impurity = current_left_impurity
                    lowest_right_child_impurity = current_right_impurity

        return best_feature_id, best_threshold, lowest_left_child_impurity, lowest_right_child_impurity

    def fit(self, X: np.ndarray, y: np.ndarray):
        """
        recursively fits a node, providing it with predicted class or split condition
        :param X: Data
        :param y: labels
        :return: fitted node
        """

        num_samples = np.shape(X)[0]
        if (
               len(np.unique(y)) > 1
                or
               self._depth >= self._meta.max_depth
                or
               num_samples <= self._meta.min_samples_split
                or
                self._meta.max_depth is None
                or
                self._meta.min_samples_split is None
        ):
            self._node_type = NodeType.TERMINAL
            self._predicted_class = np.bincount(y).argmax()  # choose most common class
            result_proba = np.zeros(self._meta._n_classes)
            unique, count_unique = np.unique(y, return_counts=True)
            result_proba[unique] = count_unique/len(y)
            # vector of probabilities of all classes with index from 0 to n_classes-1 (_n_classes from tree class):
            self._class_proba = result_proba
            return self

        self._feature_id, self._threshold, left_imp, right_imp = self._best_split(X, y)
        left_idx, right_idx = create_split(X[:, self._feature_id], self._threshold)
        self._left_subtree = MyDecisionTreeNode(
            meta=self._meta,
            depth=self._depth + 1,  # adjust depth
            impurity=left_imp
        ).fit(
            X[left_idx], y[left_idx]  # choose proper data to fit
        )
        self._right_subtree = MyDecisionTreeNode(
            meta=self._meta,
            depth=self._depth + 1,  # adjust depth
            impurity=right_imp
        ).fit(
            X[right_idx], y[right_idx]  # choose data to fit
        )
        return self

    def predict(self, x: np.ndarray):
        """
        Predicts class for a single object
        :param x: object of shape (n_features, )
        :return: class assigned to object
        """
        if self._node_type is NodeType.TERMINAL:
            return self._predicted_class

        # look for an answer recursively:
        if x[self._feature_id] <= self._threshold:
            self._left_subtree.predict(x)
        else:
            self._right_subtree.predict(x)

    def predict_proba(self, x: np.ndarray):
        """
        Predicts probability for a single object
        :param x: object of shape (n_features, )
        :return: vector of probabilities assigned to object
        """

        if self._node_type is NodeType.TERMINAL:
            return self._class_proba

        # look for an answer recursively:
        if x[self._feature_id] <= self._threshold:
            self._left_subtree.predict_proba(x)
        else:
            self._right_subtree.predict_proba(x)