Untitled
unknown
plain_text
2 years ago
904 B
9
Indexable
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
np.random.seed(42)
X = 2 * np.random.rand(100, 2)
y = 4 + 3 * X[:, 0] + 2 * X[:, 1] + np.random.randn(100)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Coefficients:", model.coef_)
print("Intercept:", model.intercept_)
plt.scatter(X_train[:, 0], y_train, color='blue', label='Training Data')
plt.scatter(X_test[:, 0], y_test, color='red', label='Test Data')
x_line = np.linspace(0, 2, 100)
y_line = model.coef_[0] * x_line + model.intercept_
plt.plot(x_line, y_line, color='black', linewidth=3, label='Fitted Line (Feature 1)')
plt.xlabel('Feature 1')
plt.ylabel('y')
plt.legend()
plt.show()
Editor is loading...
Leave a Comment