Untitled
unknown
plain_text
a year ago
904 B
1
Indexable
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split np.random.seed(42) X = 2 * np.random.rand(100, 2) y = 4 + 3 * X[:, 0] + 2 * X[:, 1] + np.random.randn(100) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print("Coefficients:", model.coef_) print("Intercept:", model.intercept_) plt.scatter(X_train[:, 0], y_train, color='blue', label='Training Data') plt.scatter(X_test[:, 0], y_test, color='red', label='Test Data') x_line = np.linspace(0, 2, 100) y_line = model.coef_[0] * x_line + model.intercept_ plt.plot(x_line, y_line, color='black', linewidth=3, label='Fitted Line (Feature 1)') plt.xlabel('Feature 1') plt.ylabel('y') plt.legend() plt.show()
Editor is loading...
Leave a Comment